[math]As(r_1, r_2) \, := \, Take \left(\frac{1}{r_1^{2} + r_2^{2}} \; \left(\begin{array}{rr}r_1^{2} - r_2^{2}&2 \; r_1 \; r_2\\2 \; r_1 \; r_2&r_2^{2} - r_1^{2}\\\end{array}\right),1,2 \right)[/math][icon]/images/ggb/toolbar/mode_keepinput.png[/icon][br][size=85]As(r_1, r_2):=Take((1 / (r_1^(2) + r_2^(2)) * {{r_1^(2) - r_2^(2), ((2 * r_1) * r_2)}, {((2 * r_1) * r_2), r_2^(2) - r_1^(2)}}),1,2)[/size][br][br]Spiegelung[br][math]f(x)=\frac{1}{2} \; x^{2} - \frac{1}{3} \; x \quad an \quad n=\left( \begin{align}3 \\ 1 \end{align} \right)[/math] [br][br]As(x(n), y(n)) (x, f(x))[br][math]f_s \, := \, \left( \begin{align}\frac{3 \; x^{2} + 6 \; x}{10} \\ \frac{-6 \; x^{2} + 13 \; x}{15} \end{align} \right)[/math][br][br]Curve(3 / 10 t² + 6 / 10 t, -6 / 15 t² + 13 / 15 t, t, -100, 100)