IM Alg2.2.11 Lesson: Finding Intersections

Mentally identify a point where the graphs of the two functions intersect, if one exists.
[math]f(x)=x[/math] and [math]g(x)=3[/math]
[math]j(x)=(x+3)(x-3)[/math] and [math]k(x)=0[/math]
[math]m(x)=(x+3)(x-3)[/math] and [math]n(x)=(x-3)[/math]
[math]p(x)=(x+5)(x-5)[/math] and [math]q(x)=(x+3)(x-3)[/math]
For each pair of polynomials given, find all points of intersection of their graphs.
[math]c(x)=x^2-7[/math] and [math]d(x)=2[/math]
[math]f(x)=(x+7)(x-4)[/math] and [math]g(x)=x-4[/math]
[math]m(x)=(x+7)(x-4)[/math] and [math]n(x)=(2x+5)(x-4)[/math]
[math]p(x)=(x+1)(x-8)[/math] and [math]q(x)=(x+2)(x-4)[/math]
Find all points of intersection of the graphs of the equations
[math]p(x)=(2x+3)(x-5)[/math] and [math]q(x)=(x+5)(x+1)(x-3)[/math].
Use graphing technology to check your solutions.
[size=150]Consider the functions [math]p(x)=5x^3+6x^2+4x[/math]  and [math]q(x)=5640[/math].[/size][br][br]Use graphing technology to find a value of [math]x[/math] that makes [math]p(x)=q(x)[/math] true.[br]
For the [math]x[/math]-value at the point of intersection, what can you say about the value of [math]5x^3+6x^2+4x-5640[/math]?[br]
What does your answer suggest is a possible factor of [math]5x^3+6x^2+4x-5640[/math]?[br]
Write your own polynomial [math]m(x)[/math] of degree 3 or higher.[br]
Use graphing technology to estimate the values of [math]x[/math] that make [math]m(x)=q(x)[/math] true.[br]
Close

Information: IM Alg2.2.11 Lesson: Finding Intersections