IM Geo.2.1 Practice: Congruent Parts, Part 1

When rectangle ABCD is reflected across line EF, the image is DCBA.
[img][/img][br]How do you know that segment [math]AB[/math] is congruent to segment [math]DC[/math]?
Triangle FGH is the image of isosceles triangle FEH after a reflection across line HF.
[img][/img][br]Select [b]all[/b] the statements that are a result of corresponding parts of congruent triangles being congruent.
Reflect right triangle ABC across line BC.
[img][/img][br]Classify triangle [math]ACA'[/math] according to its side lengths. Explain how you know.[br]
Triangles FAD and DCE are translations of triangle ABC
[img][/img][br]Select [b]all[/b] the statements that [i]must[/i] be true.
Triangle ABC is congruent to triangles BAD and CEA.
Explain why points [math]D,A,[/math] and [math]E[/math] are collinear.
Explain why line [math]DE[/math] is parallel to line [math]BC[/math].[br]
[img][/img][br]Identify a figure that is the result of a rigid transformation of quadrilateral [math]ABCD[/math].
Describe a rigid transformation that would take [math]ABCD[/math] to that figure.[br]
Fermer

Information: IM Geo.2.1 Practice: Congruent Parts, Part 1