×
Save
Cancel
Delete
Visualizing Radians and Arc Length
1. When the angle is set to 1 radian, what do you notice about the radius and arc length?
Font size
Font size
Very small
Small
Normal
Big
Very big
Bold
[ctrl+b]
Italic
[ctrl+i]
Underline
[ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link
[ctrl+shift+2]
Quote
[ctrl+shift+3]
[code]
Code
[ctrl+shift+4]
Insert table
Remove Format
Insert image
[ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
They are the same.
2. What is the relationship between arc length, the angle (in radians) and radius?
Font size
Font size
Very small
Small
Normal
Big
Very big
Bold
[ctrl+b]
Italic
[ctrl+i]
Underline
[ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link
[ctrl+shift+2]
Quote
[ctrl+shift+3]
[code]
Code
[ctrl+shift+4]
Insert table
Remove Format
Insert image
[ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
arc length = # radians * radius
3. In a circle there are
. How many radians is this? (Hint: think about arc length and circumference! What is the formula for circumference?)
Font size
Font size
Very small
Small
Normal
Big
Very big
Bold
[ctrl+b]
Italic
[ctrl+i]
Underline
[ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Link
[ctrl+shift+2]
Quote
[ctrl+shift+3]
[code]
Code
[ctrl+shift+4]
Insert table
Remove Format
Insert image
[ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
radians
Close
Check
Try again
Information: Visualizing Radians and Arc Length