Introduction to Coordinate Proofs - Triangles

Prove triangles are congruent. It is easier to show congruent segments on the coordinate plane, rather than congruent angles. SSS is the most common reason we will use to prove triangle are congruent on the coordinate plane. (If we have right triangles, we could also use SAS or HL.)
What information could be used to prove whether or not ?
Prove whether or not
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Prove whether a triangle is a right triangle. Since right angles are formed by perpendicular lines, we try to prove whether two of the triangle's sides are perpendicular.
Prove a triangle is a right triangle. (hint: perpendicular lines make right angles)
Prove whether or not is a right triangle.
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Close

Information: Introduction to Coordinate Proofs - Triangles