Parameters of a Linear Equation

Back to school...
[size=100]Modify the sliders in the applet below and explore how the parameters of a linear equation influence its graphical representation. [/size]
Instructions
[size=100][table][tr][td]1.[/td][td][/td][td]Enter [font=Courier New]a: y = 0.8 x + 3.2[/font] into the [i]Input Field[/i] and press the [i]Enter [/i]key.[/td][/tr][/table][b][br]Tasks[/b][br][list][*]Move the line in the [img]https://wiki.geogebra.org/uploads/thumb/4/40/Menu_view_algebra.svg/16px-Menu_view_algebra.svg.png[/img] [i]Algebra View[/i] using the arrow keys. Which parameter are you able to change in this way?[br][/*][*]Move the line in the [img]https://wiki.geogebra.org/uploads/thumb/c/c8/Menu_view_graphics.svg/16px-Menu_view_graphics.svg.png[/img] [i]Graphics View [/i]with the mouse. Which transformation can you apply to the line in this way?[/*][/list][/size]
Instructions (continued)
[table][tr][td][size=100]2.[/size][/td][td][size=100][icon]https://tube.geogebra.org/images/ggb/toolbar/mode_delete.png[/icon][/size][/td][td][size=100]Delete the line created in construction step 1.[/size][/td][/tr][tr][td][size=100]3.[/size][/td][td][size=100][icon]https://tube.geogebra.org/images/ggb/toolbar/mode_slider.png[/icon][/size][/td][td][size=100]Create sliders [i]m[/i] and [i]b[/i] using the default settings of sliders.[/size][/td][/tr][tr][td][size=100]4.[/size][/td][td][icon]https://wiki.geogebra.org/uploads/thumb/4/40/Menu_view_algebra.svg/120px-Menu_view_algebra.svg.png[/icon][/td][td][size=100]Enter [font=Courier New]a: y = m x + b[/font]  into the [i]Input Field[/i].[/size][/td][/tr][tr][td][size=100]5.[/size][/td][td][size=100][icon]https://tube.geogebra.org/images/ggb/toolbar/mode_intersect.png[/icon][/size][/td][td][size=100]Create the intersection point [i]A[/i] between the line a and the [i]y[/i]-axis.[br][u]Hint[/u]: You can use the command [font=Courier New]Intersect(a, yAxis)[/font].[/size][/td][/tr][tr][td][size=100]6.[/size][/td][td][size=100][icon]https://tube.geogebra.org/images/ggb/toolbar/mode_point.png[/icon][/size][/td][td][size=100]Create a point [i]B[/i] at the origin.[/size][/td][/tr][tr][td][size=100]7.[/size][/td][td][size=100][icon]https://tube.geogebra.org/images/ggb/toolbar/mode_segment.png[/icon][/size][/td][td][size=100]Create a segment between the points [i]A[/i] and [i]B[/i].[br][u]Hint[/u]: You might want to increase the line thickness in order to make the segment visible on top of the [i]y[/i]-axis.[/size][/td][/tr][tr][td][size=100]8.[/size][/td][td][size=100][icon]https://tube.geogebra.org/images/ggb/toolbar/mode_slope.png[/icon][/size][/td][td][size=100]Create the slope (triangle) of the line by clicking on the line.[/size][/td][/tr][tr][td][size=100]9.[/size][/td][td][size=100][icon]https://tube.geogebra.org/images/ggb/toolbar/mode_showhideobject.png[/icon][/size][/td][td][size=100]Hide points [i]A[/i] and [i]B[/i].[br][u]Hint[/u]: Instead of using this tool, you can also click on the corresponding symbols in the [i]Algebra View[/i] as well.[/size][/td][/tr][tr][td][size=100]10.[/size][/td][td][center][img]https://wiki.geogebra.org/uploads/thumb/d/db/Stylingbar_icon_graphics.svg/32px-Stylingbar_icon_graphics.svg.png[/img][/center][/td][td][size=100]Enhance the appearance of your construction using the [i]Style Bar[/i].[/size][/td][/tr][/table]
Task
[size=100]Write down instructions for your students, that guide them through examining the influence of the equation’s parameters on the line by using the sliders. [br][u]Hint[/u]: These instructions could be provided on paper along with the GeoGebra file.[/size]
Close

Information: Parameters of a Linear Equation