5, 8, 13 jsou členy Fibonacciho posloupnosti. Pro členy Fibonacciho posloupnosti (1,1,2,3,5,8,13...) platí: [math]K_{n-1}K_{n+1}-K_n^2=(-1)^n[/math] Zde [math]n=6→5\cdot13 - 8^2=(-1)^6=1[/math]. Proto v obdélníku 1 čtvereček přebývá. Rozdělíme-li ale čtverec v poměru zlatého řezu, "paradox" je odstraněn a plocha obdélníka je přesně rovna ploše čtverce. (Viz jezdec) Paradox Lewise Carrolla 1 - trojice (5,8,13) [url]http://tube.geogebra.org/student/b77140#material/777859[/url] Paradox Lewise Carrolla 2 - trojice (3,5,8)[url]http://tube.geogebra.org/student/b77140#material/785909[/url]
další podobné paradoxy: [url]http://tube.geogebra.org/student/b113766#[/url] [url]http://en.wikipedia.org/wiki/Missing_square_puzzle[/url] [url]http://www.cut-the-knot.org/Curriculum/Fallacies/CurryParadox.shtml[/url] [url]http://www.cut-the-knot.org/do_you_know/GoldenRatio.shtml#Curry[/url] [url]http://www.homeschoolmath.net/teaching/geometric_vanishes_puzzles.php[/url] [url]http://yozh.org/2011/05/15/an-area-paradox/[/url] [url]http://mathlesstraveled.com/2011/05/15/cassinis-identity/[/url]