Net of a dodecahedron

Task
Create a Dodecahedron and its net that can be moved by using a slider. Use the [img]https://wiki.geogebra.org/uploads/thumb/e/e8/Nav_play_circle.svg/16px-Nav_play_circle.svg.png[/img] [i]Play Button[/i] in the lower left corner of the [img]https://wiki.geogebra.org/uploads/thumb/c/c8/Menu_view_graphics.svg/16px-Menu_view_graphics.svg.png[/img] [i]Graphics View[/i] to animate the construction.
Explore the construction...
Instructions
[table][tr][td][size=100]1.[/size][/td][td][size=100][icon]https://wiki.geogebra.org/uploads/thumb/3/30/Menu-options.svg/120px-Menu-options.svg.png[/icon][/size][br][/td][td][size=100]Open the [img]https://wiki.geogebra.org/uploads/thumb/8/8c/Ic_menu_black.svg/16px-Ic_menu_black.svg.png[/img] [i]Menu [/i]in the top right corner, select[i] Settings [/i]and set [i]Labeling[/i] to [i]No New Objects[/i].[/size][br][/td][/tr][tr][td][size=100]2.[/size][/td][td][size=100][icon]/images/ggb/toolbar/mode_point.png[/icon][/size][/td][td][size=100]Select the [i]Point[/i] tool and create two arbitrary points [i]A[/i] and [i]B[/i]. [/size][/td][/tr][tr][td][size=100]3.[/size][/td][td][icon]/images/ggb/toolbar/mode_move.png[/icon][br][/td][td][size=100]Select the [i]Move[/i] tool and click into the [img]https://wiki.geogebra.org/uploads/thumb/b/bb/Perspectives_algebra_3Dgraphics.svg/16px-Perspectives_algebra_3Dgraphics.svg.png[/img] [i]3D Graphics View[/i] to show the [i]3D Graphics View Style Bar.[/i][/size][/td][/tr][tr][td][size=100]4.[/size][/td][td][img]https://wiki.geogebra.org/uploads/thumb/c/c5/Stylingbar_icon_graphics3D.svg/32px-Stylingbar_icon_graphics3D.svg.png[/img][br][/td][td][size=100]Open the[size=100][/size] [i]3D Graphics View Style Bar [/i]and hide the axis and the [size=100][i]xOy[/i]-plane[/size].[/size][/td][/tr][tr][td][size=100]5.[/size][/td][td][size=100][icon]https://wiki.geogebra.org/uploads/thumb/3/30/Menu-options.svg/120px-Menu-options.svg.png[/icon][/size][/td][td]Open the [i]3D Graphics Settings[/i] and on tab [i]Basic[/i] uncheck [i]Use clipping[/i] and [i]Show clipping[/i].[br][/td][/tr][tr][td][size=100]6.[/size][/td][td][size=100][icon]https://wiki.geogebra.org/uploads/thumb/4/40/Menu_view_algebra.svg/120px-Menu_view_algebra.svg.png[/icon][/size][/td][td]Enter [code]Dodecahedron(A, B)[br][/code] into the [i]Input Bar [/i]to create a Dodecahedron. [br][/td][/tr][tr][td][size=100]7[/size][/td][td][size=100][icon]https://www.geogebra.org/images/ggb/toolbar/mode_net.png[/icon][/size][/td][td]Select the [i]Net[/i] tool and click on the Dodecahedron to create the net. [br][/td][/tr][tr][td][size=100]8.[/size][/td][td][size=100][icon]https://www.geogebra.org/images/ggb/toolbar/mode_showhideobject.png[/icon][/size][/td][td]Select the [i]Show / Hide Object[/i] tool and hide all points by selecting them.[size=100][br][/size][/td][/tr][tr][td][size=100]9.[/size][/td][td][/td][td][size=100][size=100]Open the [img]https://wiki.geogebra.org/uploads/thumb/8/8c/Ic_menu_black.svg/16px-Ic_menu_black.svg.png[/img] [i]Menu[/i], select [i]View[/i] and open the [img]https://wiki.geogebra.org/uploads/thumb/c/c8/Menu_view_graphics.svg/16px-Menu_view_graphics.svg.png[/img] [i]Graphics View[/i]. [/size][br][/size][/td][/tr][tr][td][size=100]10.[/size][/td][td][size=100][icon]/images/ggb/toolbar/mode_move.png[/icon][/size][/td][td][size=100]Select the [i]Move[/i] tool and change the value of the slider.[br][/size][/td][/tr][tr][td][size=100]11.[/size][/td][td][size=100][/size][/td][td][size=100]Right-click (MacOS: [i]Ctrl-click[/i]) the slider and choose [i]Animation[/i] from the appearing context menu.[br][b]Hint:[/b] An [i]Animation [/i]button appears in the lower left corner of the [img]https://wiki.geogebra.org/uploads/thumb/c/c8/Menu_view_graphics.svg/16px-Menu_view_graphics.svg.png[/img] [i]Graphics View[/i]. It allows you to either [img]https://wiki.geogebra.org/uploads/thumb/8/82/Nav_pause_circle.svg/16px-Nav_pause_circle.svg.png[/img] pause or [img]https://wiki.geogebra.org/uploads/thumb/e/e8/Nav_play_circle.svg/16px-Nav_play_circle.svg.png[/img] continue an animation.[br][/size][/td][/tr][tr][td][size=100]12.[/size][/td][td][size=100][img]https://wiki.geogebra.org/uploads/thumb/c/c5/Stylingbar_icon_graphics3D.svg/32px-Stylingbar_icon_graphics3D.svg.png[/img][/size][/td][td][size=100]Enhance your construction using the [i]Style Bar[/i].[br][/size][/td][/tr][/table]
Try it yourself...

Information: Net of a dodecahedron