IM Geo.6.7 Practice: Distances and Parabolas

[size=150]The point [math]\left(6,y\right)[/math] is the same distance from [math]\left(4,1\right)[/math] as it is from the [math]x[/math]-[/size][size=150]axis. What is the value of [math]y[/math]?[/size]
[size=150]A parabola is defined as the set of points the same distance from [math]\left(6,2\right)[/math] and the line [math]y=4[/math]. Select [b]all [/b]points that are on this parabola.[/size]
Compare and contrast the parabolas with these definitions.
[list][*]parabola A: points that are the same distance from [math]\left(0,4\right)[/math] and the [math]x[/math]-axis[/*][*]parabola B: points that are the same distance from [math]\left(0,-6\right)[/math] and the [math]x[/math]-axis[/*][/list]
[size=150]Find the center and radius of the circle represented by the equation [math]x^2+y^2-8y+5=0[/math].[/size]
Match each expression with the value needed in the box in order for the expression to be a perfect square trinomial.
[math]x^2+14x+\boxed{ }[/math]
[math]x^2-\dfrac{1}{2}x+\boxed{ }[/math]
[math]c^2-10c+\boxed{ }[/math]
[math]z^2+z+\boxed{ }[/math]
Write each expression as the square of a binomial.
[math]x^2-12x+36[/math]
[math]y^2+8y+16[/math]
[math]w^2-16w+64[/math]
[size=150]Write an equation of a circle that is centered at [math]\left(1,-4\right)[/math] with a radius of 10.[/size]
[size=150]The density of water is 1 gram per cm³. An object floats in water if its density is less than water’s density, and it sinks if its density is greater than water’s. Will a solid bar of soap shaped like a rectangular prism with mass 1.048 kilograms and dimensions 5.6 centimeters, 13 centimeters, and 16 centimeters float or sink? Explain your reasoning.[/size]
[size=150]Jada has this idea for bisecting angle [math]ABC[/math]. First she draws a circle with center [math]B[/math] through [math]A[/math]. Then she constructs the perpendicular bisector of [math]AD[/math].[/size][br][img][/img][br]Does Jada's construction work? Explain your reasoning. You may assume that the perpendicular bisector of line segment [math]AD[/math] is the set of points equidistant from [math]A[/math] and [math]D[/math].
Close

Information: IM Geo.6.7 Practice: Distances and Parabolas