[img][/img][br][br]What do you think is true about the angles in [math]A'B'C'[/math] compared to the angles in [math]ABC[/math]?
Do you think it would be true for angles in any dilation?
[size=150]Dilate point [math]A[/math] using center [math]C[/math] and scale factor [math]\frac{3}{4}[/math].[/size]
[size=150]Dilate point [math]B[/math] using center [math]C[/math] and scale factor [math]\frac{1}{3}[/math].[/size]
[size=150]Dilate point [math]D[/math] using center [math]C[/math] and scale factor [math]\frac{3}{2}[/math].[/size]
[size=150]Dilate point [math]CE[/math] using center [math]C[/math] and scale factor [math]2[/math].[/size]
What happens when the center of dilation is on a line and then you dilate the line?
[table][tr][td][list][*] [math]X[/math] is the midpoint of [math]AB[/math].[/*][/list][list][*][math]B'[/math] is the image of [math]B[/math] after being dilated by a scale factor of 0.5 using center [math]C[/math].[/*][*][math]A'[/math] is the image of [math]A[/math] after being dilated by a scale factor of 0.5 using center [math]C[/math].[/*][/list][/td][td][img][/img][/td][/tr][/table][br][br]Call the intersection of [math]CX[/math] and [math]A'B'[/math] point [math]X'[/math]. Is point [math]X'[/math] a dilation of point [math]X[/math]? Explain or show your reasoning.[br]
[img][/img][br][br]Jada claims that all the segments in [math]ABC[/math] are parallel to the corresponding segments in [math]A'B'C'[/math]. Write Jada's claim as a conjecture.
Prove your conjecture.[br]
In Jada’s diagram the scale factor was greater than one. Would your proof have to change if the scale factor was less than one?[br]