Θεώρημα Bolzano

Αρχική οδηγία: Για να αλλάξεις τις τιμές ενός δρομέα, είτε τον σύρεις με το ποντίκι σου, είτε τον επιλέγεις με αριστερό κλικ και χρησιμοποιείς τα πλήκτρα κατεύθυνσης του πληκτρολογίου (τα βελάκια). Κάνοντας κλικ στα κουτιά  «Θεώρημα Bolzano» και  «Δείξε τη συνάρτηση» μπορείς να θυμηθείς το θεώρημα. Αποεπίλεξε το κουτί  «Θεώρημα Bolzano» για να συνεχίσεις. Έναρξη δραστηριότητας
  1. Αρχικά, δίνεται μία προεπιλεγμένη συνάρτηση και ένα προεπιλεγμένο διάστημα [α, β]. Μπορείς να αλλάζεις τις τιμές των α, β με τους αντίστοιχους δρομείς.
  2. Με το δρομέα x0  αλλάζεις τη θέση του σημείου Α της γραφικής παράστασης της f, οπότε έχεις τη δυνατότητα να βλέπεις τις αντίστοιχες τιμές της.
  3. Παρατηρώντας τη δοσμένη γραφική παράσταση και αφού πειραματιστείς με τις θέσεις του σημείου Α, απάντησε στα ακόλουθα ερωτήματα:
Ερώτηση 1
Για τη συνάρτηση f που βλέπεις εφαρμόζεται το Θ. Bolzano στο διάστημα [-2,1];
Ερώτηση 2
Πόσες ρίζες έχει η f στο διάστημα (-2,1);
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Δραστηριότητα - Β΄ μέρος     Επίλεξε το κουτί «Επιλογή τύπου συνάρτησης» και στη συνέχεια κάνε κλικ στο κουμπί «Συνάρτηση 2». Αποεπίλεξε το κουτί «Επιλογή τύπου συνάρτησης». Παρατηρώντας τη δοσμένη γραφική παράσταση και αφού πειραματιστείς με τις θέσεις του σημείου Α, απάντησε στα ακόλουθα ερωτήματα:
  1. Για τη συνάρτηση που βλέπεις εφαρμόζεται το Θ. Bolzano στο διάστημα [-1, 1]; Γιατί;
  2. Πόσες ρίζες έχει η f στο διάστημα (-1,1);
Επίλεξε το κουμπί «Αλλαγή συνάρτησης» και απάντησε πάλι στα ίδια ερωτήματα.
Ερώτηση 3
Για τη συνάρτηση που βλέπεις εφαρμόζεται το Θ. Bolzano στο διάστημα [-1, 1]; Γιατί;
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Ερώτηση 4
Πόσες ρίζες έχει η f στο διάστημα (-1,1);
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Ερώτηση 5
Βεβαιώσου ότι έχεις επιλέξει διαφορετική συνάρτηση από την προηγούμενη με κλικ στο κουμπί "Αλλαγή συνάρτησης". Για τη συνάρτηση που βλέπεις εφαρμόζεται το Θ. Bolzano στο διάστημα [-1, 1]; Γιατί;
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Ερώτηση 6
Πόσες ρίζες έχει η f στο διάστημα (-1,1);
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Συμπέρασμα:   Αν για μία συνάρτηση f ισχύει ότι  f(α)f(β)<0, αλλά δεν είναι συνεχής στο [α, β], τότε δεν μπορούμε να ξέρουμε αν η εξίσωση f(x) = 0 έχει ή όχι ρίζα στο (α, β).
Δραστηριότητα - Γ΄ μέρος Επίλεξε το κουτί «Επιλογή τύπου συνάρτησης» και στη συνέχεια κάνε κλικ στο κουμπί «Συνάρτηση 3». Αποεπίλεξε το κουτί «Επιλογή τύπου συνάρτησης». Παρατηρώντας τη δοσμένη γραφική παράσταση και αφού πειραματιστείς με τις θέσεις του σημείου Α, απάντησε στα ακόλουθα ερωτήματα:
Ερώτηση 7
Για τη συνάρτηση που βλέπεις εφαρμόζεται το Θ. Bolzano στο διάστημα [-1, 1.5]; Γιατί;
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Ερώτηση 8
Πόσες ρίζες έχει η f στο διάστημα (-1,1.5);
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Ερώτηση 9
Με τον αντίστοιχο δρομέα άλλαξε την τιμή του άκρου β σε β = 0,2 . Για τη συνάρτηση που βλέπεις εφαρμόζεται το Θ. Bolzano στο διάστημα [-1, 1.5]; Γιατί;
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Ερώτηση 10
Πόσες ρίζες έχει η f στο διάστημα (-1,0.2);
Font sizeFont size
Very smallSmallNormalBigVery big
Bold [ctrl+b]
Italic [ctrl+i]
Underline [ctrl+u]
Strike
Superscript
Subscript
Font color
Auto
Justify
Align left
Align right
Align center
• Unordered list
1. Ordered list
Quote [ctrl+shift+3]
[code]Code [ctrl+shift+4]
Insert table
Remove Format
Insert image [ctrl+shift+1]
Insert icons of GeoGebra tools
[bbcode]
Text tools
Insert Math
Συμπέρασμα:   Αν για μία συνάρτηση f ισχύει ότι είναι συνεχής στο [α, β] αλλά  f(α)f(β) ≥ 0, τότε δεν μπορούμε να ξέρουμε αν η εξίσωση f(x) = 0 έχει ή όχι ρίζα στο (α, β).
Close

Information: Θεώρημα Bolzano