IM Geo.3.2 Practice: Scale of the Solar System

Figure G' is the image of figure G by a dilation with scale factor 2.
[img][/img][br][br]Where is the center of this dilation?
Here is a quadrilateral.
Dilate quadrilateral [math]ABCD[/math] using center [math]A[/math] and scale factor [math]\frac{1}{2}[/math].
Triangle ABC is dilated.
The image is [math]A'B'C'[/math], find the value of [math]x[/math]. [br][br][img][/img]
Polygon Q is a scaled copy of Polygon P.
[img][/img][br][br]The value of [math]x[/math] is 6, what is the value of [math]y[/math]?
Solve the equation.
[math]\frac{2}{5}=\frac{x}{20}[/math]
[math]\frac{2}{3}=\frac{x}{10}[/math]
WXYZ is a kite.
[img][/img][br][br]Angle [math]WXY[/math] has a measure of 94 degrees and angle [math]ZYX[/math] has a measure of 60 degrees. Find the measure of angle [math]ZWY[/math].
The semaphore alphabet is a way to use flags to signal messages.
Here's how to signal the letter U. Describe a transformation that would take the right hand flag to the left hand flag.[br][br][img][/img]
Tancar

Informació: IM Geo.3.2 Practice: Scale of the Solar System