Sia P un punto qualsiasi della base AB del triangolo isoscele ABC; sia r un punto di AC tale che AR è congruente a PB e sia S il punto di BC il punto di BC tale che SB è congruente ad AP. Dimostra che i triangoli APR e BSP sono congruenti. Congiungi poi R con S e dimostra che gli angoli PRS e PSR sono congruenti.