One root as a continued fraction

Let [math]{\small f(x) = x^3 + c_2 x^2 + c_1 x + c_0, }[/math] where [list=1] [*][math]{\small f'(a) = f'(b) = 0,} \;\;\;\;\;\; a, b[/math] real; [math] \;\;\; a \ne b.[/math] [/list] Then f(x) has at least one root given by a continued fraction. Demonstration of the case f(b) <0, (and therefore a root r > b.) _________ The Cubic Equation: [url]http://www.geogebratube.org/student/b143433#chapter/4603[/url]

 

Ryan Hirst

 
Resource Type
Activity
Tags
approximation  cubic  polynomial  roots 
Target Group (Age)
14 – 18
Language
English (United States)
 
 
 
© 2024 International GeoGebra Institute