Riemann sums for continuous functions

A Riemann sum is an approximation of the area of a region, often the region underneath a curve. It is named after German mathematician Bernhard Riemann. The sum is calculated by dividing the region up into shapes (rectangles or trapezoids) that together form a region that is similar to the region being measured, then calculating the area for each of these shapes, and finally adding all of these small areas together. Because the region filled by the small shapes is usually not exactly the same shape as the region being measured, the Riemann sum will differ from the area being measured. This error can be reduced by dividing up the region more finely, using smaller and smaller shapes. As the number of shapes grows towards infinity, the sum approaches the Riemann integral.

 

Juan Carlos Ponce Campuzano

 
Resource Type
Activity
Tags
function  functions  integral  sum 
Target Group (Age)
19+
Language
English (United Kingdom)
 
 
GeoGebra version
4.4
Views
2907
Contact author of resource
 
 
© 2024 International GeoGebra Institute