PLANK's Law of black-body radiation

[b]Spectral radiance B: Spectral distribution of an ideal "Black Body" at temperature equilibrium[/b] [i]Why do hot things glow? And why do really hot things shine, like the sun? How hot is the sun's surface? How do we know how far other stars are away?[/i] All this Questions can be answered with the help of Max Karl Ernst Ludwig Planck's Equation! On the way I [b]solved [/b]two other open problems: [b]1.: Logarithmic scaling: Just compare B_f and B_{f-log}. 2.: Easy dynamic coloring: Have a look on the hidden "Graphics2"-Screen and the "Auxilary Objects"[/b] The colors are just symbolic. This is because of the limited range of computer screens. 1800K hot plates glow brighter red than in the scale. At 10000K the intensity would instantly blind you. If you do [b]NOT [/b]like it, leave a comment. I am also interested in your diffculties or (possible) missunderstandings. [i]Keywords: Planck's Law, Black-body radiation, Cavity with a hole, Color Temperature, HSV HSL RGB Colour model, dynamic colours Logarithmic scale, Log-Log scale, double Logarithm created with GGB 4.4.5.0[/i]

 

GenF10

 
Tipus de material
Construcció dinàmica
Etiquetes
blackbody  cavity  color  colour  double  dynamic  hole  hsv  log-log  logarithm  logarithmic model planck radiance radiation rgb scale spectral spectrum temperature Mostra'n més...
Grup de destinació (edats)
19+
Idioma
English (United Kingdom)
 
 
Versió del GeoGebra
4.4
Visites
5143
Poseu-vos en contacte amb l'autor del material.
 
 
© 2025 International GeoGebra Institute