Differentials, polar coordinates. (1)

Differential relationships among arc, angle, tangent and area in polar coordinates. -The curve can be given arbitrarily using Bezier curves. The assumptions, * r is a function of θ * the curves are smooth can each be violated in at least one way by manipulating the control points and handles. DiffEQ in polar coordinates: [b]*1) Diagram and questions[/b] 2) lim θ→0 sinθ/θ = 1. [url]http://www.geogebratube.org/material/show/id/32985[/url] 3) {Link}

 

Ryan Hirst

 
Type de ressources
Activité
Balises
arc  area  curves  equations  geometry  length  limits  plane  space 
Tranche d'âges
19+
Langue
English (United States)
 
 
Version GeoGebra
4.2
Vues
3918
Contacter l'auteur de la ressource.
 
 
© 2025 International GeoGebra Institute