Differentials, polar coordinates. (1)

Differential relationships among arc, angle, tangent and area in polar coordinates. -The curve can be given arbitrarily using Bezier curves. The assumptions, * r is a function of θ * the curves are smooth can each be violated in at least one way by manipulating the control points and handles. DiffEQ in polar coordinates: [b]*1) Diagram and questions[/b] 2) lim θ→0 sinθ/θ = 1. [url]http://www.geogebratube.org/material/show/id/32985[/url] 3) {Link}

 

Ryan Hirst

 
Resource Type
Activity
Tags
arc  area  curves  equations  geometry  length  limits  plane  space 
Target Group (Age)
19+
Language
English (United States)
 
 
GeoGebra version
4.2
Views
3738
Contact author of resource
 
 
© 2024 International GeoGebra Institute