A Formula of the area equalangular convex pentagon

Let $ABCDE$ be a equalangular convex pentagon then $Area(ABCDE)=\frac{1}{4}\cot\frac{\pi}{5}(a^2+b^2+c^2+d^2+e^2-\frac{(a-b)^2+(b-c)^2+(c-d)^2+(d-e)^2+(e-a)^2}{\sqrt{5}})$

 

Đào Thanh Oai

 
Resource Type
Activity
Tags
area  class  collection  polygon  polygons 
Target Group (Age)
3 – 19+
Language
English
 
 
 
© 2025 International GeoGebra Institute