Squarring the Circle

I modified the geometry through " Scale " and you should be able to calculate any square that will equal the area of the Circle: which Below lays out the problem! Squaring the circle is a problem proposed by ancient geometers. It is the challenge of constructing a square with the same area as a given circle by using only a finite number of steps with compass and straightedge. More abstractly and more precisely, it may be taken to ask whether specified axioms of Euclidean geometry concerning the existence of lines and circles entail the existence of such a square. In 1882, the task was proven to be impossible, as a consequence of the Lindemann–Weierstrass theorem which proves that pi (π) is a transcendental, rather than an algebraic irrational number; that is, it is not the root of any polynomial with rational coefficients. It had been known for some decades before then that the construction would be impossible if pi were transcendental, but pi was not proven transcendental until 1882. Approximate squaring to any given non-perfect accuracy, in contrast, is possible in a finite number of steps, since there are rational numbers arbitrarily close to π. The expression "squaring the circle" is sometimes used as a metaphor for trying to do the impossible.[1]

 

RV'SMath

 
Resource Type
Activity
Tags
circles  pythagoean  theorem 
Target Group (Age)
10 – 18
Language
English (United States)
 
 
 
© 2024 International GeoGebra Institute