Our project aims to support the course content with dynamic geometric software so that axioms and geometric theorems can be understood in depth in the teaching-learning process of mathematics. Thus, students will establish stronger bonds between geometry and algebra, provide students with more visual materials to make learning more permanent and interesting, and find ways to improve mathematics teaching by bringing together many mathematics teachers from different parts of the world.
Authors
1. Esra Şahin / https://www.geogebra.org/u/sesrashn
2. Teresa Xavier / https://www.geogebra.org/u/teresaxavier
3. Fátima Moreira / https://www.geogebra.org/u/fatimamoreira2
4. Marta Cuevas / https://www.geogebra.org/u/martacuevasfern%C3%A1ndez
5. Marlene Silva / https://www.geogebra.org/u/marlenegouveiasilva
6. Gözde Türker / https://www.geogebra.org/u/gozdeturker
7. Mürvet Erdoğan / https://www.geogebra.org/u/merdogan
8. Günay Hüseynzade / https://www.geogebra.org/u/hgmekteb193
9. Sevda Yüce / https://www.geogebra.org/u/sevdayuce2011
10. Xristina Kladou / https://www.geogebra.org/u/xristina73_xk
11. Marjeta Amanović / https://www.geogebra.org/u/marjeta_amanovic
12. Hatice Günay / https://www.geogebra.org/u/hgunay
13. Ümit Kurtuluş Karakuş /
14. Gisca Diana / https://www.geogebra.org/u/giscadiana05
15. Popa Ana Marcela/
16. Arzu Arslan Kurnaz / https://www.geogebra.org/u/arzuarslan77
17. Gonca Işıkoğlu / https://www.geogebra.org/u/goncaisikoglu
18. Maryam Abu Gharah / https://www.geogebra.org/u/sulimanmaryam42
19. Federico Binaglia https://www.geogebra.org/u/federicobinaglia