Conjecture on a cyclic quadrilateral associated with central line of triangle

Let A, B, C, D lie on a circle such that A, B, C, D are not form an Isosceles trapezoid. Let AB meets CD at E and AD meets BC at F. Define l(n, m, T) is a line through triangle center X(n), X(m) of triangle T, then l(n, m, ABF), l(n, m, CDF), l(n, m, ADE), l(n, m, BCE) form a cyclic quadrilateral for every positive integer n, m (n \neq m). Whre X(n) refer to Kimberling triangle center.

 

Đào Thanh Oai

 
Typ materiálu
Aktivita
Klíčová slova
circle  circumcircle  class  complex-numbers  practice 
Cílová skupina (věk)
3 – 19+
Jazyk
English
 
 
 
© 2026 International GeoGebra Institute