Hipérbola dados 3 Puntos y 2 tangentes

En este caso la recta impropia r{∞} es secante a la cónica , luego nos aseguraremos que la cónica tenga dos puntos en común , para ello eligiremos dos de los puntos como impropios y centro de ambos Haces respectivamente. A{∞},B{∞} y C serán los puntos y siendo las tangentes tg{B∞ } y la tgA{∞} (en este caso el rayo común será r{∞}) En esta caso R₀ será propio Para hallar los restantes puntos de la parábola procederemos aplicando la proyectividad. Secc{A{∞}C},Proy{R₀},SeccB{∞}C,Proy{B}(x)=x′

 

Horacio Dell Isola

 
Resource Type
Activity
Tags
geometria  hyperbola  tangent-function 
Target Group (Age)
19+
Language
Spanish (Spain) / Español (España)‎
 
 
GeoGebra version
4.2
Views
1857
Contact author of resource
 
 
© 2024 International GeoGebra Institute