The generalized Fermat-Weber problem searches for an optimal
point [math](x,y)[/math] which solves the following problem:
Given n fixed destination points in the plane with coordinates [math](x_i, y_i)[/math] , determine the optimum location [math](x, y)[/math] of a single source point, that is [math] minimize_{x,y} f(x,y) = \sum_{i=1..n} \sqrt{(x-x_i)^2+(y-y_i)^2}[/math]