Newton's Method

... for finding the zeros of a smooth function. [i]Begin[/i] [math] \;\;\;[/math] Choose a point at pleasure on the curve, [math] {\small P_0 = (x_0, f(x_0)) }[/math] and [math]\;\;\;[/math] Draw the tangent to the curve at [math] {\small P_0}[/math]. [math]\;\;\;[/math] Mark the intersection with the x-axis, [math] {\small X_1 = (x_1, 0)} [/math]. Let this be the new x-value. [math]\;\;\;[/math] Mark [math]{\small P_1 = (x_1, f(x_1)) }[/math] on the curve. [math]\;\;\;[/math] Draw the tangent to the curve at [math] {\small P_1}[/math]. [math]\;\;\;[/math] . . . The sequence converges to a real zero of f(x). ______________ As always, these are my self-study materials. Let me know how I can make them more useful to you.

 

Ryan Hirst

 
Resource Type
Activity
Tags
newton  polynomial  roots  tangent 
Target Group (Age)
14 – 18
Language
English (United States)
 
 
License
CC-BY-SA, GeoGebra Terms of Use
Derived Resources
Newton's Method
Shared by Marcelo Lares
 
 
© 2024 International GeoGebra Institute