A conic associated with X(2), X(6), X(13), X(14), X(15), X(16)

Let ABC be a triangle, P be a point in the plane. The circle (BPC) meets AB, AC again at A_c, A_b Define B_c, B_a, C_a, C_b cyclically. If P=X(2), or X(6), or X(13, or X(14), or X(15), or X(16)...... then six points C_c, A_b, B_c, B_a, C_b, C_a lie on a conic. If P=X(6) the conic is a circle.

 

Đào Thanh Oai

 
Resource Type
Activity
Tags
class  collection  conic  conic-sections  triangles 
Target Group (Age)
3 – 19+
Language
English
 
 
 
© 2025 International GeoGebra Institute