Let ABC be a triangle, P be a point in the plane.
The circle (BPC) meets AB, AC again at A_c, A_b
Define B_c, B_a, C_a, C_b cyclically.
If P=X(2), or X(6), or X(13, or X(14), or X(15), or X(16)......
then six points C_c, A_b, B_c, B_a, C_b, C_a lie on a conic.
If P=X(6) the conic is a circle.