In 1852 kleurde Francis Guthrie een kaart van de Engelse graafschappen in. Hij lette er op dat twee aan elkaar grenzende graafschappen een verschillende kleuren kregen. Guthrie ontdekte dat hij maar vier verschillende kleuren nodig had en vroeg zich af of dat ook voor andere landkaarten zo was.
Hij contacteerde wiskundigen, maar die hadden geen idee hoe ze zoiets konden bewijzen.
Wel vond men geen tegenvoorbeelden. De eigenschap werd een vermoeden. Dit vermoeden werd in 1976 bevestigd door krachtige computerprogramma's. Kaarten konden teruggebracht worden tot een aantal 'onvermijdelijke situaties', die alle het vermoeden bevestigden. En zo werd het vierkleurenprobleem de vierkleurenstelling.
We kunnen deze stelling wiskundig ook toepassen op planaire grafen (grafen waarbij de verbindingen tussen de punten van de graaf elkaar niet snijden).