Slope: Intuitive Intro and Exploration

[size=200][color=#1e84cc][url=https://drive.google.com/open?id=1ZbntWgv0ZB6aYtlXpdzDpfuKHrMYWJqe]Warm Up Questions[/url][br][br][url=https://docs.google.com/document/d/1W5fggl-QmnwOoT1Yjs2MfZnwVzIF49pflGX33xe0PN0/copy?usp=sharing]Student Exploration To Accompany Resource[/url][/color][/size]
Slide the slider all the way to the right. Then move the LARGE POINTS around to change the slope of the line. Use this interactive figure to help you complete the investigation in the 2nd URL above.
After completing the investigation above, take some time test your slope knowledge skills. If you're having trouble with any question, refer back to the resource above.
[size=200][color=#1e84cc][url=https://www.geogebra.org/m/xefdkxqm]SLOPE: Quick Intuitive Quiz Questions[/url][br][br][url=https://www.geogebra.org/m/rtbwk2wv]SLOPE: Graphing Slope Types[/url][br][/color][/size][size=200][color=#1e84cc][br][url=https://www.geogebra.org/m/gV9GRCRN]SLOPE: Quiz (1)[/url][br][br][url=https://www.geogebra.org/m/Pkb2Z9z5]SLOPE: Quiz (2)[/url][/color][/size]

5.5 Midsegment Theorem Investigation

Student-Constructed GeoGebra Sketch: Easy to Create and Formulate & Test Conjectures!
NOW YOU TAKE THE ROLE of the STUDENT! Use the given GeoGebra tools below to recreate as much of the sketch shown above! (Color matching not necessary.)
QUESTION:
Any segment connecting midpoints of 2 sides of a triangle is called a MIDSEGMENT of that triangle. Move the triangle's vertices around. What seems to be true about the midsegment of ANY TRIANGLE?
GeoGebra for MEANINGFUL REMEDIATION or CONCEPTUAL DISCOVERY for Students Needing More Support. Move the triangle's WHITE VERTICES anywhere you'd like!
[b][color=#0000ff][url=https://docs.google.com/document/d/1HsFCBz3suKP-AhU50diM9G9zdtdswAsaR-m4jCJ8omI/edit?usp=sharing]Triangle Midsegment Action: Link to a Discovery Learning Lesson using the applet above[/url]. [/color][/b]
Student-Constructed GeoGebra Sketch: Easy to Create and Formulate & Test Conjectures!

Exponential Functions: Graphs

The following applet displays the graph of the exponential function [math]f\left(x\right)=c\cdot a^{kx}+d[/math]. [br]Interact with the applet below for a few minutes, then answer the questions that follow.
[b][color=#000000]Questions:[/color][/b][br][br][color=#000000]1) How does the parameter [/color][color=#cc0000][b]a[/b][/color] [color=#000000]affect the graph of the exponential function? Explain. [br] What happens if [/color][color=#cc0000][b]a > 1[/b][/color][color=#000000] and [/color][color=#1e84cc][b]k > 0[/b][/color][color=#000000]? What happens if [/color][color=#cc0000][b]a < 1[/b][/color][color=#000000] and [/color][color=#1e84cc][b]k > 0[/b][/color][color=#000000]? [br][br][/color][color=#000000]2) How does the parameter [/color][b][color=#1e84cc]k[/color][/b][color=#000000] affect the graph? Explain. [br] If you need a hint, refer back to [url=https://www.geogebra.org/m/HJvZSUna]this worksheet[/url]. [br][br][/color][color=#000000]3) What does the parameter [/color][color=#980000][b]d[/b][/color][color=#000000] do the graph? Explain. [br][br][/color][color=#000000]4) Suppose [/color][color=#cc0000][b]a < 1[/b][/color][color=#000000]. [br] Given this constraint, is it possible to get the graph of this exponential function to look the way it does[br] when [/color][color=#cc0000][b]a > 1[/b][/color][color=#000000] and [/color][color=#1e84cc][b]k > 0[/b][/color][color=#000000]? Explain. [/color]

Ellipse eccentricity

Shows effect on ellipse when eccentricity changes.
Ellipse eccentricity

Reimann Sum

Adjust n to increase or decrease number of interval

U-Substitution (Definite Integrals)

Rolling two dice

Rolling two dice
Problem: when rolling two fair dice, a sum of 9 occurs more often than a sum of 10. [br]But 9=3+6=4+5  and  10=4+6=5+5, therefore there are 2 ways to get a sum of 9 and 10.

Displacement, Velocity & Acceleration

Information