Complex Plane
[b][u]Complex Numbers [/u] [math]\mathbb{C}[/math][/b][b][br][br]Definition: [u]The "number" [math]i[/math][/u][/b][b][u]:[br][/u][br][/b]To solve the equation [math]x^2+1=0[/math] we create a symbol [math]i[/math] and declare [br]that [math]i^2=−1[/math] so [math]i[/math] solves the equation and we write [math]i=\sqrt{-1}[/math].[br][br][b]Definitions: [u]A complex number[/u] [math]z[/math][/b][b] is a number that can be expressed in the form [math]z=a+bi[/math][/b][b] where [/b][math]a[/math][b] and [math]b[/math][/b][b] are real numbers. [br][br]If [/b][math]z=a+bi[/math][b] then [math]a[/math][/b][b] is called the real part of [math]z[/math][/b][b] and [math]bi[/math][/b][b] (and sometimes [math]b[/math][/b][b]) is called the imaginary part of [/b][math]z[/math][b].[/b][br][br][b]Examples: [math]3+2i[/math][/b][b] and [math]−2−i[/math][/b][b].[br][br][u][b]Complex Geometry- The Complex Plane[/b][/u][br][br][/b]Complex numbers are identified with points in a cartesian plane by having [math]a+bi[/math] identified with the point with coordinates [math](a,b)[/math] or with position vectors by identifying [br][math]a+bi[/math] with the vector [math]\left(\begin{matrix}a\\b\end{matrix}\right)[/math].[br]With this identification [math]i[/math] is identified with the point [math](0,1)[/math] or the vector [math]\left(\begin{matrix}0\\1\end{matrix}\right)[/math] and [math]−i[/math] is identified with [math](0,−1)[/math] or the vector [math]\left(\begin{matrix}0\\-1\end{matrix}\right)[/math].[b][b][br][br] [center][img width=269,height=224][/img][/center][b][u]Complex Number Norm (Magnitude)[br][/u][br][/b][/b][/b][u]The norm of [/u][math]z[/math], denoted [math]|z|[/math]or [math]||z||[/math], is defined by [math]|z|=|a+bi|=\sqrt{a^2+b^2}[/math].[center][br][b][b][/b][/b][img width=242,height=196][/img][/center][b][u]Polar Representation of z[/u][/b][b][br][br]Using trigonometry we have the identification: [/b][math]z=|z|cos(θ)+|z|sin(θ)i=|z|[cos(θ)+sin(θ)i]=|z|cis(θ)[/math] [b]where[/b] [math]a=|z|cos(θ),b=|z|sin(θ)[/math][b].[br][br]The angle [math]θ[/math][/b][b] determined by [/b][math]z[/math][b] can be measured in degrees or [br]radians and restricted to be in a specific interval. [br][br]For example, [math]θ∈[0,2\pi)[/math][/b][b] or [math]θ∈(−\pi,\pi][/math][/b][b].[br][br]Thus the angle can be considered a function of [math]z[/math][/b][b], called [u]the argument of [math]z[/math][/u][/b][b]: [math]Arg(z)=θ[/math][/b][b].[center][br][img width=356,height=199][/img][/center][/b]
[b]Complex Numbers in GeoGebra[/b][br][br][b]From the Toolbar:[/b][br] From the point dropdown, select [icon]/images/ggb/toolbar/mode_complexnumber.png[/icon] complex number. Then click on any point in the Graphics Frame to create a complex number. [br][br][b]Comments: [/b]The point will appear in the frame labeled z[sub]1[/sub]. [br]In the Algebra Frame will appear z[sub]1[/sub] = ... + ....i. [br]This number/point is "free" and can be changed with the mouse (reset to the pointer [icon]/images/ggb/toolbar/mode_move.png[/icon]) by moving it, or by entry of a new value by double clicking on current value in the Algebra Frame.[br][br][b]From the Input Bar:[/b][br]Enter the complex number with or without a name: e.g., z1= 2+3i or just 2+3i.[br][br][b]Comments: [/b]A point will appear in the Graphics Frame labeled z1. [br]In the Algebra Frame will appear z1 = 2 + 3i. [br]This number/point is "free" and can be changed with the mouse (reset to the pointer [icon]https://www.geogebra.org/images/ggb/toolbar/mode_move.png[/icon]) by moving it, or by entry of a new value by double clicking on current value in the Algebra Frame.[br][br][b]The Norm of a Complex Number[/b][br][b]From the Input Bar:[/b][br][b]As a function: [/b] Enter abs(...) and hit return. A real number will appear in the Algebra Frame determined as the norm of the complex number. E.g. abs(3+4i) gives ...=5. This real number is dependent on the argument of abs.[br][b]With bar notation:[/b] Enter |...| and hit return. A real number will appear in the Algebra Frame determined as the norm of the complex number. E.g. |3+4i| gives ...=5. This real number is dependent on the number between the bars.[br][br][b]Polar Representation of a Complex Number[/b][br][b]From the Input Bar:[/b][br][b]As a function: [/b] Enter ToPolar(...) and hit return. A point will appear in the Algebra Frame determined with the polar coordinates of the complex number. E.g. ToPolar(3+4i) gives ...=(5; 53.13[math]^\circ[/math]). This point is [br]dependent on the on the argument of ToPolar.[br][b][br]Comment: [/b]The Argument of a complex number is the second coordinate of the Polar Form.[br]This can be found directly by using the "Angle" function applied to the complex number. E.g. Angle(3 + 4ί) gives ...=53.13[math]^\circ[/math].
Table and Mapping Diagram for A Complex Linear Function
First Example of a 3D Mapping Diagram for a Complex Linear Function
Consider the complex linear function: [math]f(z)=a+bz[/math] where [i]a [/i]and [i]b[/i] are complex numbers managed as points in the complex plane. [br][br]You can click on the points to change the complex values for [i]a[/i] and [i]b[/i] by moving the points in the plane.[br]The two tables are created as a spread sheet with the entries in the [math]z=a+bi[/math] table indicating the complex numbers in the lattice of the domain used to determine the [i][math]w=f(z)[/math] [/i]table determined as complex numbers using arithmetic. [br]In this example no complex "function" has been created.[br]Check the box to see the mapping diagram that corresponds to the data in the table. [br]The 3 dimensional mapping diagram is created using the data in the spread sheet.[br]The domain plane is parallel to the target plane and the arrows go from points/complex numbers [math]z[/math] in the domain to the corresponding points/complex numbers [math]w=f(z)[/math] in the target plane.
Mapping Diagrams: Complex Analysis -functions with complex parameters. circles
A simple but still interesting example is presented with the complex function [math]g(z)=z^2+az+b[/math].[br]In this GeoGebra activity, The parameters [math]a[/math] and [math]b[/math] are controlled by the complex numbers (points) [b]a[/b] and [b]b[/b] in the domain frame. A circle of radius [math]\delta[/math] controlled by the slider and center at the complex number (point) [math]z_#[/math] is used to locate [b]m[/b] points n the circle where [b]m[/b] is con trolled by another slider. [br][br]The 3-dimensional frame has the mapping diagram for the function visualized using the points on the circles in the domain frame along with the point [math]z_#[/math]. For comparison the graph of an associated real quadratic function is shown in the third 2-dimensional frame.[br][br]Changes can be made by moving [math]z_#[/math], [b]m[/b], [b]a, [/b]b or [math]\delta[/math], or by entering a new complex function using parameters [b]a[/b] or [b]b[/b]. This example can be removed from sight in the activity by unchecking the box labelled "Show function g with parameters a and b".[br][br]A more subtle example can be shown by checking the box labelled [br]"Show function h with parameters a, b, c and d".[br]This will show the function [math]h(z)=\frac{az+b}{cz+d}[/math] using parameters [b]a,b,c,[/b] and [b]d[/b] controlled by the appropriate complex numbers (points) in the domain frame. The other two frames are as with the quadratic example.[br]Again the diagram can be controlled by changing the parameters. [br]
Mapping Diagrams: Complex Analysis- functions and continuity
[b][center]Continuity at a Point[/center]Definition: [/b]Suppose [math]U\subset\mathbb{C}[/math] is an open set and [math]f:U\to\mathbb{C}[/math] with [math]z_0\in U[/math]. [br]We say [math]f[/math] is continuous at [math]z_0[/math] if [math]\lim_{z\to z_0}f(z)=f(z_0)[/math].
Mapping Diagram Visualizing Complex Derivative:Powers
Mapping Diagram Visualizing Complex Derivative for Powers
[b][center]The Complex Derivative and the Differential[/center]Suppose [math]U\subset\mathbb{C}[/math] is a domain, [math]z_0\in U[/math], and [math]f:U\longrightarrow\mathbb{C}[/math].[br][br]Definition: [/b]The [b]derivative[/b] of [math]f[/math] at [math]z_0[/math], denoted [math]f'(z_0)[/math], is defined by[br] [math]f'(z_0)\equiv\lim_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}[/math] [b]provided the limit exists.[br][/b]If [math]f'(z)[/math] exists for all [math]z[/math] in some open set containing [math]z_0[/math] , [math]f[/math] is called [b]holomorphic[/b] at [math]z_0[/math].[br][br][b]Definition: [/b]Suppose [math]f[/math] is holomorphic at [math]z_0[/math].[br]The [b]differential[/b] of [math]f[/math] at [math]z_0[/math] for [math] \Delta z\in\mathbb{C}[/math] , denoted [math]df(z_0,\Delta z)[/math], is defined by [math]df(z_0,\Delta z)=f'(z_0)\Delta z[/math] .[br][br][b]Fact: [/b] If [math]f[/math] is holomorphic at [math]z_0[/math] and [math]z_0+\Delta z\in U[/math], then [math]f(z_0+\Delta z)\approx f(z_0)+df(z_0,\Delta z)[/math].
Complex Line Integral: Definition and F.T. Examples
Definition of the integral for complex analysis and its mapping diagram:[br]Suppose : [math]f:\mathbb{C}\to\mathbb{C}[/math] and [math]\gamma:[a,b]\to\mathbb{C}[/math][br][b]The definite integral of[/b] [math]f[/math][br][math]\int_γf(z)dz\ =\lim_{n \to \infty}(\sum_{k=0}^{n-1}f(z_k)\Delta z_k)[/math] [br]where [math]Δz_k = z_{k+1}-z_k; z_k = γ(s_k); s_k =t_0+ kΔt; Δt=\frac{t_1-t_0}n[/math].[br]
Taylor Polynomials for Complex Functions: Mapping Diagrams
[b]Taylor's theorem[/b] generalizes to functions[math]f:U\longrightarrow\mathbb{C}[/math] which are [url=https://en.wikipedia.org/wiki/Complex_differentiable]complex differentiable[/url] in an open subset [math]U⊂\mathbb{C}[/math] of the [url=https://en.wikipedia.org/wiki/Complex_plane]complex plane[/url].[br][br]The [b]Taylor polynomial[/b] holds in the form similar to that for real analysis: [br][math]f(z)=P_k(z)+R_k(z)[/math] , [math]P_k(z)=\sum_{j=0}^k \frac {f^{(j)}(c)}{j!}(z-c)^j[/math] , and [math]R_k(z)=f(z)-P_k(z)[/math],[br]which the following figure visualizes and compares using mapping diagrams restricted to circles.