Exploring Points, Lines, and Planes (V1)
In the app below, drag the points to move the POINT, LINE, and PLANE. [br][br][i]If you click on a point before dragging it, you can change the direction to where you want to move it. [/i]
Without Googling, how would you describe the term "POINT"?
Without Googling, how would you describe the term "LINE"?
Without Googling, how would you describe the term "PLANE"?
Üçgen Alanı Uygulaması(V1)
Aşağıdaki uygulamada bir üçgen gösterilmektedir.[br][br]Mavi açı ve pembe açının büyüklüklerini, sol alt köşedeki kaydırıcılardan değiştirebilirsiniz. Ayrıca beyaz noktaları istediğiniz herhangi bir yere istediğiniz zaman taşıyabilirsiniz.[br][br]Uygulamayla birkaç dakika etkileşime geçtikten sonra, aşağıdaki soruları yanıtlayın
üçgenin alanı= ?
1.
Bu uygulamanın dinamiklerinde, üçgen başka bir şekle dönüştürüldü. Bu hangi tür bir şekildir? Uygulama, sınıflandırmanızın doğru olduğunu nasıl anlatıyor?
2.
Yeni şeklin alanıyla orijinal üçgenin alanı nasıl karşılaştırılır?
3.
Yeni şeklin TABAN'ı ile orijinal üçgenin TABAN'ı nasıl karşılaştırılır?
4.
Yeni şeklin YÜKSEKLİĞİ ile orijinal üçgenin YÜKSEKLİĞİ nasıl karşılaştırılır?
5.
yukarıda (1)-(4) e verdiğiniz yanıtlara göre HERHANGİ BİR ÜÇGENİN alanının nasıl bulunabileceğini açıklayınız.[br]
kısa video
Parallelogram: Area
Directions:
In the app below, use the [b]filling[/b] slider to make the parallelogram light enough so that you can see the white gridlines through it. [b]But don't touch anything else yet! [/b][br][br]After you set the [b]filling[/b] slider, try to count the number of squares inside this parallelogram. [br]Be sure to include partial squares! Provide a good estimate in the question box below.
Try to count the number of squares inside this parallelogram. How many squares (i.e. square units) do you estimate to be inside this parallelogram?
Slide the "[b]Slide Me" [/b]slider now. Carefully observe what happens. What shape do you see now?
How does the area of this new shape compare with the area of the original parallelogram? How do you know this?
How many squares do you now count in the newer shape that was formed? How many squares were in the original parallelogram?
Without looking it up on another tab in your browser, describe how we can find the area of ANY PARALLELOGRAM.
Congruent Segments Construction (I)
I[color=#000000]n the applet below, use the limited toolbar to construct segments that are congruent to the two segments displayed.[br]Use the [b]Distance[/b] tool afterwards to show that these segments are indeed congruent. [/color]
I[color=#000000]n the applet below, use the limited toolbar to construct segments that are [b]triple the length[/b] of the two segments displayed.[br]Use the [b]Distance[/b] tool afterwards to show that these segments are indeed triple the length of the original segments displayed. [/color]
Equilateral Triangle Construction Template
[color=#000000]In the applet below, use the tools of the limited toolbar to construct an [b]equilateral triangle that's inscribed in the circle shown.[/b] [br][br][i]When you're finished, show that the triangle you've constructed is indeed an equilateral triangle.[/i][/color]
Geometry Resources
[list][*][b][url=https://www.geogebra.org/m/z8nvD94T]Congruence (Volume 1)[/url][/b][/*][*][b][url=https://www.geogebra.org/m/munhXmzx]Congruence (Volume 2)[/url][/b][/*][*][b][url=https://www.geogebra.org/m/dPqv8ACE]Similarity, Right Triangles, Trigonometry[/url][/b][/*][*][b][url=https://www.geogebra.org/m/C7dutQHh]Circles[/url][/b][/*][*][b][url=https://www.geogebra.org/m/K2YbdFk8]Coordinate and Analytic Geometry[/url][/b][/*][*][b][url=https://www.geogebra.org/m/xDNjSjEK]Area, Surface Area, Volume, 3D, Cross Section[/url] [/b][/*][*][b][url=https://www.geogebra.org/m/NjmEPs3t]Proof Challenges[/url] [/b][/*][/list]