Medians Centroid Theorem (Proof without Words)

Applet contains a triangle for students to easily construct its 3 [color=#0a971e]medians[/color] and [color=#0a971e]centroid[/color]. Yet this applet also gives the student the ability to visually see that the [color=#0a971e]centroid[/color] of a triangle divides any [color=#0a971e]median[/color] of a triangle in a 2:1 ratio (or, equivalently, lies 2/3 of the way down any [color=#0a971e]median[/color] from its given vertex.) The applet also leads students to discover that the [color=#0a971e]centroid[/color] of a triangle always lies INSIDE the triangle (and never anywhere else.)

 

Tim Brzezinski

 
Type de ressources
Activité
Balises
ccss  ccss.hsg.co.c.10  ccss.hsg.co.d.12  centroid  common  common-core  core  exploration  median  medians  theorem triangles Voir davantage …
Tranche d'âges
11 – 14
Langue
English
 
 
 
© 2024 International GeoGebra Institute