The Law of Sines - Proof

Given is an arbitrary triangle [math]ABC[/math] with sides [math]a[/math], [math]b[/math] and [math]c[/math] and angles [math]\alpha[/math], [math]\beta[/math] and [math]\gamma[/math]. Prove that [br][math]\frac{a}{sin\left(\alpha\right)}=\frac{b}{sin\left(\beta\right)}=\frac{c}{sin\left(\gamma\right)}=d[/math], where [math]d[/math] is the diameter of the circle through the vertices.[br][list][*]Drag the orange vertices in counterclockwise direction as far as they can go. [/*][*]Use the resulting right triangles to write trigonometric ratios involving the green side, the red side [math]d[/math], and the green angle.[br][/*][*]Experiment with different triangles.[/*][/list]

Information