Classroom activities: example

Construction steps
1. In the input bar enter a cubic function: e.g. [b]f(x)=x^3-2x^2-2x+2[/b][br][br]2. Use [b]New Point[/b] to add a point on the curve.[br][br]3. Use [b]Tangent[/b] to create a tangent to the curve at point A.[br][br]4. Use [b]Slope[/b] to measure the gradient of the tangent.[br][br]5. Plot the gradient function by entering [b]g(x)=f '(x)[/b] in the input bar.      
Question for discussion
[list=1]How is the gradient of the tangent (as the point moves) related to the shape of the gradient graph?   [br][/list]
Problem
Change your function in GeoGebra so that is has the following gradient functions:

Information: Classroom activities: example