Write a parameterization for the osculating circle to a space curve in terms of the curvature [math]\kappa[/math], unit tangent [math]\vec{T}[/math], and unit normal [math]\vec{N}[/math] vectors.
Let [math]\vec{c}\left(s\right)[/math] be an arclength parameterization and let [math]\vec{c}\left(s_0\right)[/math] be a point on the curve. Then the osculating circle is the image curve of:[br][br][math]\vec{r}\left(t\right)=\left(\vec{c}\left(s_0\right)+\frac{1}{\kappa\left(s_0\right)}\vec{N}\left(s_0\right)\right)+\frac{1}{\kappa\left(s_0\right)}\cos\left(t\right)\vec{N}\left(s_0\right)+\frac{1}{\kappa\left(s_0\right)}\sin\left(t\right)\vec{T}\left(s_0\right),\text{ }t\in\left[0,2\pi\right][/math]