Foucault pendulum

[color=#0000ff][i][color=#0000ff][i][color=#999999]This activity belongs to the GeoGebra book [url=https://www.geogebra.org/m/mes4bgft]The Domain of the Time[/url].[/color][/i][/color][/i][/color][br][br]If we apply a [b]1:3600[/b] time scale, we can visualize a complete rotation of the Earth in just 24 seconds. This time scale allows us to observe the behavior of the Foucault pendulum at any point on Earth. If placed in the Northern Hemisphere, the apparent rotation of the pendulum's plane will occur retrogradely (clockwise), while in the Southern Hemisphere, it will rotate directly (counterclockwise).[br][br]For better performance, it is recommended to [url=https://www.geogebra.org/material/download/format/file/id/54660981]download the GGB file[/url].
[b]SCRIPT FOR SLIDER anima[/b][br][br][color=#cc0000][color=#cc0000]# Calculate the elapsed seconds dt; add one second if t1(1) < tt[/color][/color][br][color=#999999]SetValue(tt, t1(1))[br]SetValue(t1, First(GetTime(), 3))[br]SetValue(dt, (t1(1) < tt) + (t1(1) − tt)/1000)[/color][br][color=#cc0000][br]# Move M[/color][color=#999999][br][color=#999999]SetValue[/color](v, vt + dt gt)[br][color=#999999]SetValue[/color](M, M + dt v)[/color][color=#cc0000][br][br]# Rotate the Earth and add the position M' to the log for the polygonal trail[/color][color=#0000FF][br]SetValue(f, f + dt 15°)[br][color=#0000FF]SetValue[/color](reg, Append(reg, (abs(M'); arg(M') − f; alt(M'))))[br][br][/color][color=#cc0000]# Stop the rotation after a complete turn of the pendulum[/color][color=#0000FF][br]StartAnimation(k f < 360°)[/color][br] [br][br][br][br][color=#999999][color=#999999][color=#999999][color=#0000ff][color=#0000ff][color=#999999][color=#999999]Author of the activity and GeoGebra construction: [/color][/color][/color][color=#0000ff][color=#999999][color=#999999][url=https://www.geogebra.org/u/rafael]Rafael Losada[/url].[/color][/color][/color][/color][/color][/color][/color]

Information: Foucault pendulum