Example 2: Some invertible functions (i.e. functions that pass the horizontal line test) are really hard to invert using the algebraic strategy we developed earlier this semester. Parametric equations help solve this problem. Recall that inverting means switching the roles of [math]x[/math] and [math]y[/math]. [br]Consider the function [math]f\left(x\right)=x^3-2x^2-x+4[/math].[br]Parameterize the graph of this function by letting [math]x\left(t\right)=t[/math] (I call this the dumb parameterization).[br]Then switch the roles of [math]x[/math] and [math]y[/math] to achieve a parameterization of the graph of the inverse of [math]f\left(x\right)[/math].
Parameterize [math]f[/math] as:[br][math]x\left(t\right)=t[/math][br][math]y\left(t\right)=t^3-2t^2-t+4\text{ }t\in\mathbb{R}[/math][br][br]Now switch the roles of [math]x[/math] and [math]y[/math] to achieve a parameterization for [math]f^{-1}\left(x\right)[/math]:[br][math]x\left(t\right)=t^3-2t^2-t+4[/math][br][math]y\left(t\right)=t\text{ }t\in\mathbb{R}[/math]