1.1.6 Transforming the Parameter (Circles)

Next I want to explore the effect on the image curve of transforming the parameter. Formally this means we are changing a parent function [math]\vec{c}\left(t\right)=\left(x\left(t\right),y\left(t\right)\right)[/math] into the function [math]\vec{p}\left(t\right)=\vec{c}\left(at+b\right)=\left(x\left(at+b\right),y\left(at+b\right)\right)[/math] for constants [math]a[/math] and [math]b[/math]. [br][br]We'll begin by analyzing the unit circle. Back in PreCal you learned to parameterize the unit circle via:[br][math]\vec{c}\left(t\right)=\left(\cos t,\sin t\right),t\in\left[0,2\pi\right][/math] [br]In this class I'll refer to this as the [color=#ff0000][b]standard parameterization[/b] [/color]of the unit circle.[br][br]In the applet below, experiment by changing the values of [math]a[/math] and [math]b[/math] to see the effect on the image curve. Jot down your observations.
Eliminate the parameter in the standard parameterization of the unit circle to obtain a rectangular equation for the image curve. How does transforming the parameter affect this rectangular equation?
Close

Information: 1.1.6 Transforming the Parameter (Circles)