Circles on the Rim, 2

Using a projection to hunt for iteration rules. _________________ The Tangent Circle Problem: [list] [*]1. Tangent along the rim: solve for k [*]2a. Initial position: [url]http://www.geogebratube.org/material/show/id/58360[/url] [*]2b. Tangent to equal circles: [url]http://www.geogebratube.org/material/show/id/58455[/url] [*]3a. Four mutually tangent & exterior circles (Apollonius): [url]http://www.geogebratube.org/material/show/id/58189 [/url] [*]3b. Vector reduction: [url]http://www.geogebratube.org/material/show/id/58461[/url] [/list] [list] [*]Affine Transformation [url]http://www.geogebratube.org/material/show/id/58177[/url] [*]Reflection: Line about a Circle [url]http://www.geogebratube.org/material/show/id/58522[/url] [*]Reflection: Circle about a Circle: [url]http://www.geogebratube.org/material/show/id/58185[/url] [*]Circle Inversion; Metric Space [url]http://www.geogebratube.org/material/show/id/60132[/url] [/list] Solution: [list] [*]Sequence 1: Formation [url]http://www.geogebratube.org/material/show/id/58896[/url] [*][b]→Sequence 1: Formation [/b] [*]Sequence 1: Iteration 1: [url]http://www.geogebratube.org/material/show/id/59828[/url] [*]Example of equivalent projections: [url]http://www.geogebratube.org/material/show/id/65754[/url] [*]Final Diagram: [url]http://www.geogebratube.org/material/show/id/65755[/url] [/list]

 

Ryan Hirst

 
Resource Type
Activity
Tags
conic  projection  sections  tangency 
Target Group (Age)
19+
Language
English (United States)
 
 
GeoGebra version
4.2
Views
5216
Contact author of resource
 
 
© 2024 International GeoGebra Institute