Archimedes' Arbelos: 1

Subproblem: To inscribe a circle in the knife.

_____________________ Archimedes' Arbelos: [list] [*][b] →1a. Inscribe a circle in the arc.[/b] [*]1b. Tangent circles in the arc (Solution 1). [*]1c. Vector Reduction: [url]http://www.geogebratube.org/material/show/id/54557[/url] [*]1d. Ellipse from one parameter, scale and rotation: [url]http://www.geogebratube.org/material/show/id/55256[/url] [*]1e. Final Construction: [url]http://www.geogebratube.org/material/show/id/54592[/url] [*]2a. Let one circle enclose another. Inscribe a third circle in the ring: [url]http://www.geogebratube.org/material/show/id/54595[/url] [*]2b. Tangent circles in the ring. [url]http://www.geogebratube.org/material/show/id/54596[/url] [/list] 3. Cyclic Solution: [list] [*]3a. An outer ring of tangent circles: [url]http://www.geogebratube.org/material/show/id/55009[/url] [*]3b. Determine the projection. [*]3c. Final Construction: [url]http://www.geogebratube.org/material/show/id/55883[/url] [/list]

Arbelos, 2a

For a single circle, the procedure is identical. ...

_____________________ Archimedes' Arbelos: [list] [*]1a. Inscribe a circle in the arc.[url]http://www.geogebratube.org/material/show/id/54105[/url] [*]1b. Tangent circles in the arc (Solution 1). [*]1c. Vector Reduction: [url]http://www.geogebratube.org/material/show/id/54557[/url] [*]1d. Ellipse from parameter, scale and rotation:[url]http://www.geogebratube.org/material/show/id/55256[/url] [*]1e. Final Construction: [url]http://www.geogebratube.org/material/show/id/54592[/url] [*][b]→2a. Let one circle enclose another. Inscribe a third circle in the ring. [/b] [*]2b. Tangent circles in the ring. [url]http://www.geogebratube.org/material/show/id/54596[/url] [/list] 3. Cyclic Solution: [list] [*]3a. An outer ring of tangent circles: [url]http://www.geogebratube.org/material/show/id/55009[/url] [*]3b. Determine the projection. [*]3c. Final Construction: [url]http://www.geogebratube.org/material/show/id/55883[/url] [/list]

Tangent Chain to equal Circles

If I have a starting circle, where is the next one?

The radius of the [i]n[/i]th circle is [math] x_n [/math], and its center is a distance [math] r k_n[/math] from [math]M [/math]. The sequence works for any starting position. _________________ The Tangent Circle Problem: [list] [*]1. Tangent along the rim: solve for k [*]2a. Initial position: [url]http://www.geogebratube.org/material/show/id/58360[/url] [*][b]→ 2b. Tangent chain to equal circles[/b] [*]3a. Four mutually tangent & exterior circles (Apollonius): [url]http://www.geogebratube.org/material/show/id/58189 [/url] [*]3b. Vector reduction: [url]http://www.geogebratube.org/material/show/id/58461[/url] [/list] [list] [*]Affine Transformation [url]http://www.geogebratube.org/material/show/id/58177[/url] [*]Reflection: Line about a Circle [url]http://www.geogebratube.org/material/show/id/58522[/url] [*]Reflection: Circle about a Circle: [url]http://www.geogebratube.org/material/show/id/58185[/url] [*]Circle Inversion: Metric Space: [url]http://www.geogebratube.org/material/show/id/60132[/url] [/list] Solution: [list] [*]Sequences 1: Formation [url]http://www.geogebratube.org/material/show/id/58896[/url] [*]Sequence 1: Formation [url]http://www.geogebratube.org/material/show/id/59816[/url] [*]Sequence 1: Iteration 1 [url]http://www.geogebratube.org/material/show/id/59828[/url] [*]Example of equivalent projections: [url]http://www.geogebratube.org/material/show/id/65754[/url] [*]Final Diagram: [url]http://www.geogebratube.org/material/show/id/65755[/url] [/list]

Information