So many ways to project.
The sequences become unruly. I may leave off here.
I hope it is clear that gaps can be filled in any number of ways.
_________________
The Tangent Circle Problem:
[list]
[*]1. Tangent along the rim: solve for k
[*]2a. Initial position: [url]http://www.geogebratube.org/material/show/id/58360[/url]
[*]2b. Tangent to equal circles: [url]http://www.geogebratube.org/material/show/id/58455[/url]
[*]3a. Four mutually tangent & exterior circles (Apollonius): [url]http://www.geogebratube.org/material/show/id/58189 [/url]
[*]3b. Vector reduction: [url]http://www.geogebratube.org/material/show/id/58461[/url]
[/list]
[list]
[*]Affine Transformation [url]http://www.geogebratube.org/material/show/id/58177[/url]
[*]Reflection: Line about a Circle [url]http://www.geogebratube.org/material/show/id/58522[/url]
[*]Reflection: Circle about a Circle: [url]http://www.geogebratube.org/material/show/id/58185[/url]
[*]Circle Inversion: Metric Space: [url]http://www.geogebratube.org/material/show/id/60132[/url]
[/list]
Solution:
[list]
[*]Sequences 1: Formation [url]http://www.geogebratube.org/material/show/id/58896[/url]
[*]Sequence 1: Formation [url]http://www.geogebratube.org/material/show/id/59816[/url]
[*]Sequence 1: Iteration 1 [url]http://www.geogebratube.org/material/show/id/59828[/url]
[*]Example of equivalent projections: [url]http://www.geogebratube.org/material/show/id/65754[/url]
[b]→Final Diagram[/b]
[/list]