Let one circle enclose another.
Proposition: [i]to construct a chain of tangent circles in the ring.[/i]
General solution in a closed figure: bounding circle and image superimposed.
n varies the radius of the enclosed circle. The limiting figure as nāā, is the Shoemaker's knife.
_____________________
Archimedes' Arbelos:
[list]
[*]1a. Inscribe a circle in the arc.[url]http://www.geogebratube.org/material/show/id/54105[/url]
[*]1b. Tangent circles in the arc (Solution 1).
[*]1c. Vector Reduction: [url]http://www.geogebratube.org/material/show/id/54557[/url]
[*]1d. Ellipse from parameter, scale and rotation:[url]http://www.geogebratube.org/material/show/id/55256[/url]
[*]1e. Final Construction: [url]http://www.geogebratube.org/material/show/id/54592[/url]
[*]2a. Let one circle enclose another.
Inscribe a third circle in the ring: [url]http://www.geogebratube.org/material/show/id/54595[/url]
[*]2b. Tangent circles in the ring. [url]http://www.geogebratube.org/material/show/id/54596[/url]
[/list]
3. Cyclic Solution:
[list]
[*]3a. An outer ring of tangent circles: [url]http://www.geogebratube.org/material/show/id/55009[/url]
[*]3b. Determine the projection.
[*][b]ā3c. Final Construction.[/b]
[/list]