Riemann Sums Conceptualization

This applet provides a conceptualization of Riemann sums and their limit (definite integral) as area under a function. Note that the Left and Right sum contain the indices (i-1) as a result of "counting" or "labeling" the partitions of the interval. The type of sum and number of partitions can be adjusted to show the effect of partition size on the approximation. Further discussion incorporating this applet may include conditions for which Riemann sums under- or over-estimate the true area, as well as the implications of the First Fundamental Theorem of Calculus (Definite integral = f(b) - f(a)).

 

Jerry Yang

 
Tipo di risorsa
Attività
Tag
ap-calculus  calculus  riemann-sum 
Gruppo di riferimento (età)
16 – 19+
Lingua
English
 
 
Versione di GeoGebra
5.0
Viste
1292
Contatta l'autore della risorsa
 
 
© 2025 International GeoGebra Institute