Path integral for planar curves

This worksheet shows a geometrical representation of the path integral for planar curves. If [math]c:[a,b]\rightarrow \mathbb R^2[/math] is of class [math]C^1[/math] and the composite function [math]t\rightarrow f(x(t),y(t))[/math] is continuous, then we define [math]\quad \quad\quad\int_c fds=\int_a^bf(x(t),y(t))||c'(t)||dt[/math] When [math]f(x,y)\geq0[/math], this integral has a geometric interpretation as the [b]area of a fence[/b].

 

Juan Carlos Ponce Campuzano

 
Resource Type
Activity
Tags
calculus  curve  path-integral 
Target Group (Age)
15 – 19+
Language
English
 
 
 
© 2024 International GeoGebra Institute