Example:
Solution of A x = b with
A ={{1, 1, 1},{1, 1, 0}} b ={{3},{2}}
Left-Right-Pseudo-Inverse A_{L+), A_{R+}
JordanDiagonalization JD
- JDL^A_{L+}, JDR^A_{R+})
Basis Matrix of Eigen-Vectors JD(1)
Gram-Schmidt-Orthogonalization - CAS-Function gs()
- in Row-Vector-Form
Σ Matrix sqrt of Eigenvalues JD(2)
U^T A V = Σ
(23) due to row vector from Gram-Schmidt
IL = V^{T} Σ^{-1} U b